FDA Introductory Remarks: Sofosbuvir NDA 204671

Debra Birnkrant, MD
Director, Division of Antiviral Products
Antiviral Drugs Advisory Committee Meeting
October 25, 2013
Silver Spring, MD

Background

- Chronic Hepatitis C (CHC) is a global problem
 - ~ 170 million infected worldwide
- CHC is a domestic problem
 - ~ 3.2 million of the US population are chronically infected
 - Incidence of infection in US is decreasing but CHC related complications are increasing: cirrhosis, HCC
 - With aging of infected population, more liver related complications are expected in the next 10 – 20 years
- CHC already the most common reason for liver transplant

Standard of Care (SOC)*

- GT 1 CHC
 - Protease inhibitor plus pegylated interferon with ribavirin (PEG/RBV)
 - Based on databases supporting approvals of boceprevir and telaprevir
 - Treatment duration variable for GT 1
 - based on RGT
- GT 2,3 CHC
 - Pegylated interferon and ribavirin for 24 weeks
- Response rates depend on multiple factors
 - Some of these factors may be more or less important with DAA regimens, e.g. Q80K viral polymorphism
- Toxicities seen with boceprevir and telaprevir beyond those seen with PEG/RBV
- Important drug interactions seen with PI plus PEG/RBV

Challenges for Future DAA Therapy

- Simple regimens
 - Short duration
- Easy dosing
 - Low pill burden, limited drug interactions
- All oral
- Effectiveness across HCV genotypes/subtypes
 - Difficult-to-treat populations
- Safe and tolerable
 - Manageable side effect profile

Sofosbuvir

- Nucleotide inhibitor of HCV NS5B RNA-dependent RNA polymerase
- Broad genotypic activity
- Four pivotal phase 3 trials initially submitted in NDA
 - Studied in multiple populations including interferon ineligible, intolerant; not studied in a PI failure population
 - Control arms variable and population dependent
 - VALENCE study recently submitted that examined longer durations of an IFN-free treatment regimen in GT 3 population
 - Decreased relapse rates in GT 3
- Limited drug interactions
- Well tolerated
- Designated as a Breakthrough Therapy under FDASIA, Title IX as part of an interferon-free regimen in the treatment of CHC

Draft Guidance for Industry: Chronic Hepatitis C Virus Infection: Developing DAAs for Treatment (Reissued October 2013)

- Placebo control design placebo group receives the investigational agent after 12-24 weeks (essentially delayed treatment)
- Shorter treatment durations (e.g., 12-24 weeks) make it acceptable to include a placebo control (to defer treatment for a period) (POSITRON - IFN ineligible, etc.)
- Primary purpose to allow a safety comparison because virologic response for placebo is expected to be zero
- Historical control design recommending historical controls for an all-DAA regimen or regimens with much shorter duration than approved standard of care (NEUTRINO 12 weeks SOF+PEG/RBV)
 - Expectation was that even a lower response rate than an approved option may be acceptable in the setting of an IFN-free regimen or one that significantly shortened the duration of IFN
 - Blinding could also be an issue

Breakthrough Therapy Designation

- Food and Drug Administration Safety and Innovation Act (FDASIA), signed July 2012
- Four expedited programs:
 - Accelerated Approval (1992)
 - Priority Review (1992)
 - Fast Track Designation (1997)
 - Breakthrough Therapy Designation (2012)
- Features
 - All of Fast Track features
 - Intensive guidance on efficient drug development
 - Organizational commitment

Breakthrough Therapy Designation

- Criteria
 - Serious Condition
 - Preliminary clinical evidence demonstrates substantial improvement over available therapy on one or more clinically significant endpoints
 - Greater response rate
 - Important safety advantage
 - Treats the underlying disease or reverses disease progression

Sofosbuvir: FDA Presentation

- Highlights of the clinical program
 - Treatment duration in different populations
 - GT 2,3 naïve (FISSION, POSITRON, VALENCE)
 - GT 2,3 experienced (FUSION, VALENCE)
 - GT 1,4,5,6 (NEUTRINO)
 - Impact of baseline factors on treatment response
 - Exploratory analyses for effectiveness of SOF in genotype 1 PEG/RBV treatment failures
 - Use in HCC patients meeting Milan criteria awaiting liver transplant
 - Treatment emergent resistance assessment
 - Next Generation Sequencing data reviewed
 - Safety assessment
 - Cardiac, other
 - Clinical pharmacology
 - DDI data

AC Questions

- Risk/Benefit of sofosbuvir
 - -GT 2,3
 - GT 1,4
 - PEG/RBV treatment-experienced GT 1
- Use of sofosbuvir plus ribavirin in HCC patients meeting Milan criteria and awaiting transplant
- Additional studies

Agenda

8:00 am – 8:15 am	Call to Order and Introduction of Committee	Yoshihiko Murata, MD, PhD Chair, Antiviral Drugs Advisory Committee
8:15 am - 8:30 am	Conflict of Interest Statement	Karen Abraham-Burrell, PharmD Designated Federal Officer
8:30 am – 8:45 am	FDA Introductory Remarks	Debra Birnkrant, MD Director, Division of Antiviral Products
8:45 am – 10:15 am	Sponsor Presentations	Gilead Sciences, Inc.
10:15 am – 10:30 am	Clarifying Questions	
10:30 am – 10:45 am	BREAK	
10:45 am - 11:45 am	FDA Presentations	Poonam Mishra, MD and Karen Qi, PhD
11:45 am – 12:00 pm	Clarifying Questions	
12:00 pm – 1:00 pm	LUNCH	
1:00 pm – 2:00 pm	Open Public Hearing	
2:00 pm – 3:00 pm	Questions to the Committee/Committee Discussion	
3:00 pm – 3:15 pm	BREAK	
3:15 pm - 5:00 pm	Questions to the Committee/Committee Discussion	
5:00 pm	ADJOURNMENT	11

Sofosbuvir NDA 204671 FDA Analyses

Poonam Mishra, MD on behalf of the Sofosbuvir Review Team

Antiviral Drugs Advisory Committee Meeting October 25, 2013

Presentation Outline

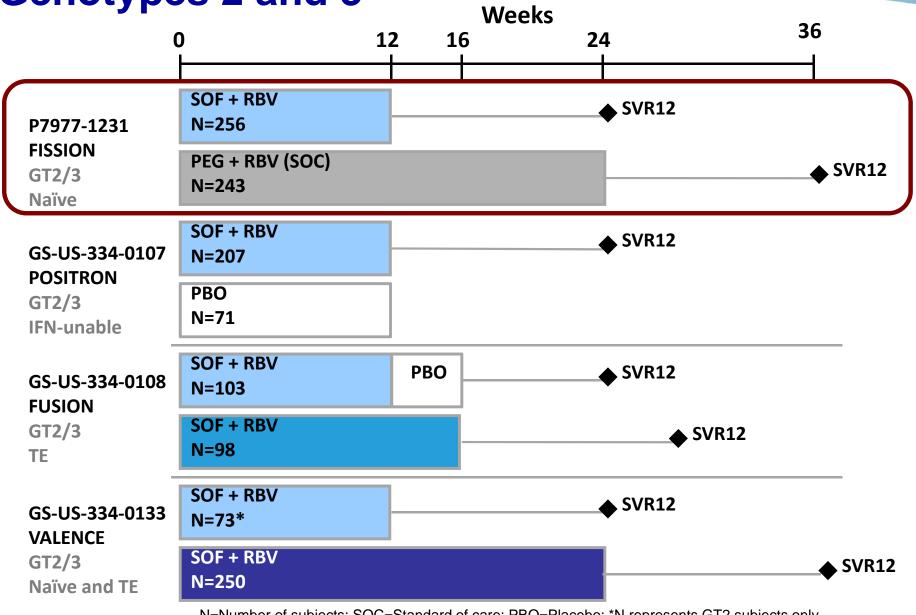
- Background
- Efficacy Results
 - Primary endpoints
 - Relapse rates
- Pre-Transplant Population
- Clinical Safety
- Clinical Virology
- Clinical Pharmacology
- Genotype 1 PEG/RBV Treatment-Experienced Population

Sofosbuvir (GS-7977)

- Prodrug of a nucleotide analog inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase
- First-in-class submission
- Proposed indication: in combination with other agents for treatment of chronic hepatitis C (CHC) in adults
- Sofosbuvir was studied in combination with ribavirin for genotypes 2 and 3, and in combination with pegylated interferon and ribavirin for genotypes 1, 4, 5 and 6.

Efficacy Results

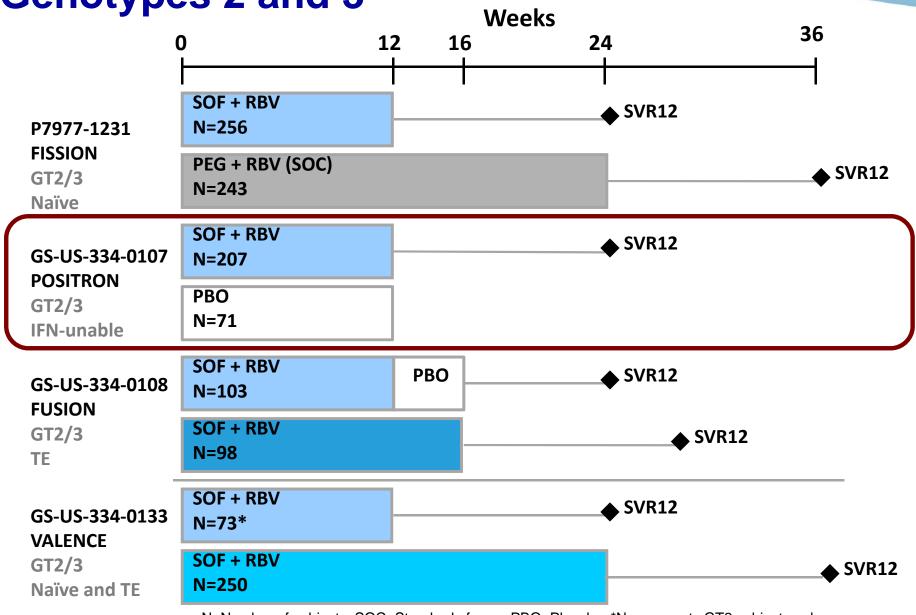
Genotypes 2 and 3


Phase 3 Trials in Genotypes 2 and 3

Trial Name	Population	Regimen* and Duration	Comparator
P7977-1231 (FISSION)	Treatment-Naïve (TN)	SOF+RBV 12 Weeks	PEG/RBV 24 Weeks
GS-US-334-0107 (POSITRON)	IFN-Unable	SOF+RBV 12 Weeks	Placebo
GS-US-334-0108 (FUSION)	Treatment-Experienced (TE)	SOF+RBV 12 Weeks SOF+RBV 16 Weeks	-
GS-US-334-0133 (VALENCE)	TN/TE	GT 2: SOF+RBV 12 Weeks GT 3: SOF+RBV 24 Weeks	-

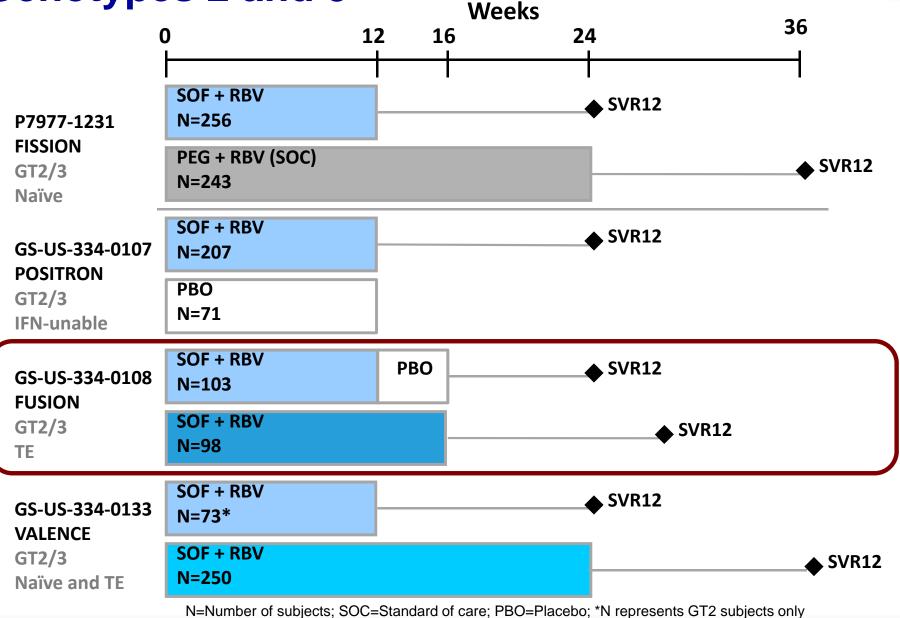
^{*}Sofosbuvir (SOF) dose was 400 mg once daily and ribavirin (RBV) dose was weight-based (1000 or 1200 mg daily doses)

SVR12 was the primary endpoint in all clinical trials



	SOF+RBV 12 Weeks N=256	PEG/RBV 24 Weeks N=243
Overall SVR12	67%	N=243 67%
Treatment Difference (95% CI)	0.1% (-8%, 8%)	
GT 2	95% (69/73)	78% (52/67)
GT 3	56% (102/183)	63% (110/176)
Overall Relapse Rate	30% (76/252)	21% (46/217)
GT 2	5% (4/73)	15% (9/62)
GT 3	40% (72/179)	24% (37/155)

Phase 3 Trial Designs: Genotypes 2 and 3

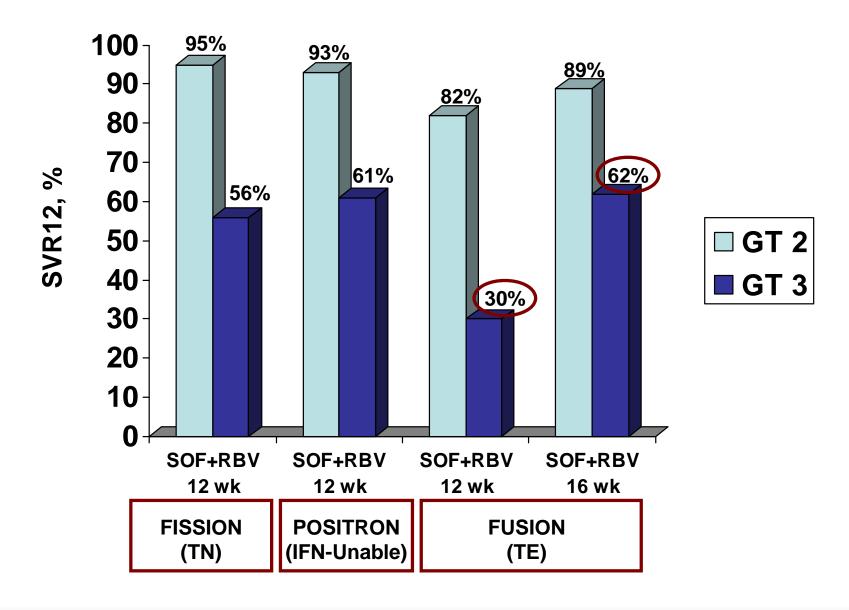


N=Number of subjects; SOC=Standard of care; PBO=Placebo; *N represents GT2 subjects only

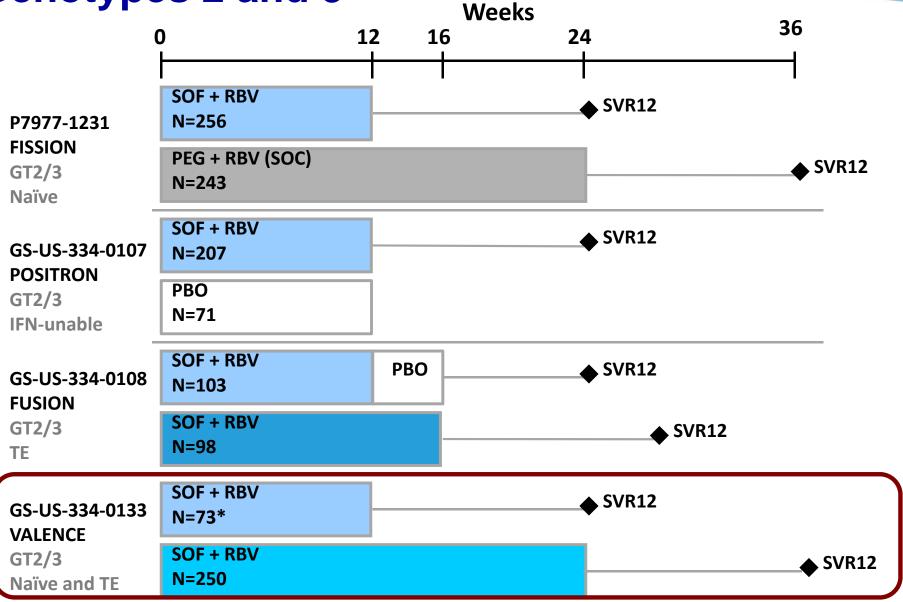
POSITRON: GT 2/3 IFN-Unable SVR12 and Relapse Rates

	SOF+RBV 12 Weeks	Placebo 12 Weeks
	N=207	N=71
Overall SVR12	78%	0%
Treatment Difference (95% CI)	78% (72%, 83%)	
GT 2	93% (101/109)	0% (0/34)
GT 3	61% (60/98)	0% (0/37)
Overall Relapse Rate	20% (42/205)	-
GT 2	5 % (5/107)	-
GT 3	38% (37/98)	-

Phase 3 Trial Designs: Genotypes 2 and 3

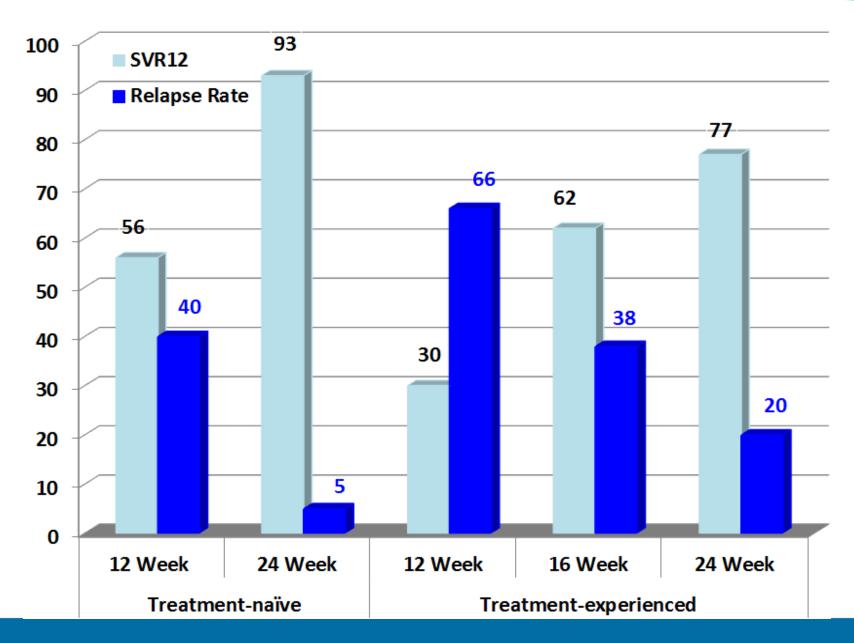


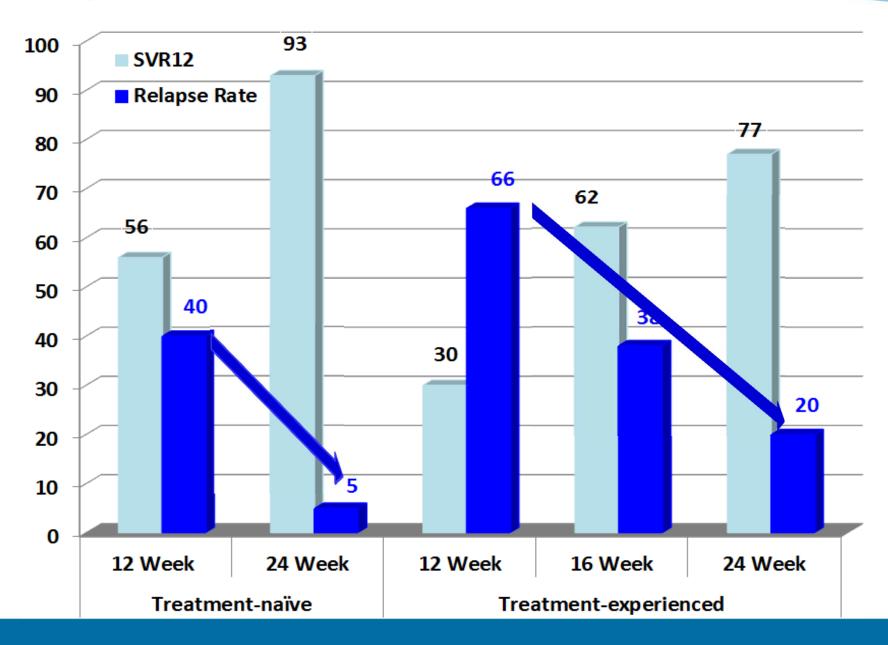
FUSION: GT 2/3 Treatment-Experienced **SVR12** and Relapse Rates

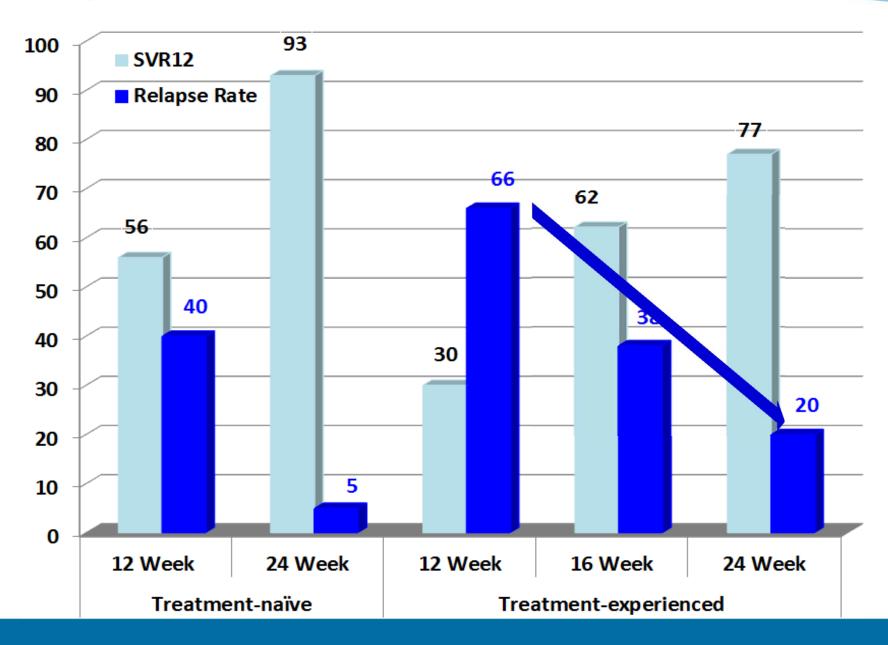

	SOF+RBV 12 Weeks N=103	SOF+RBV 16 Weeks N=98
Overall SVR12	50%	71%
Treatment difference (95% CI)	I) -22% (-35%, -9%)	
GT 2	82% (32/39)	89% (31/35)
GT 3	30% (19/64)	62% (39/63)
Overall Relapse Rate	48% (49/103)	29% (28/98)
GT 2	18% (7/39)	11% (4/35)
GT 3	66% (42/64)	38% (24/63)

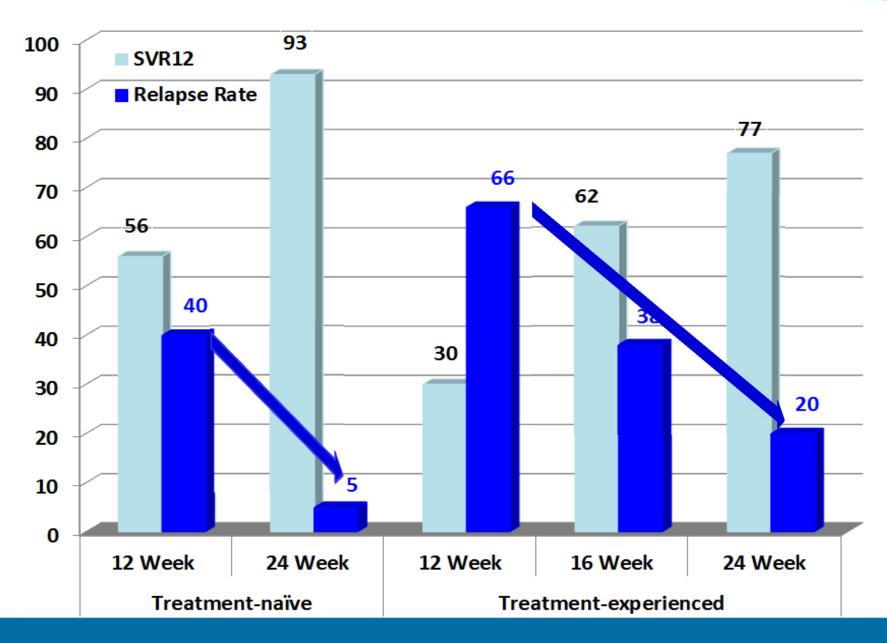
Difference in SVR12: GT 2 and GT 3

Phase 3 Trial Designs: Genotypes 2 and 3

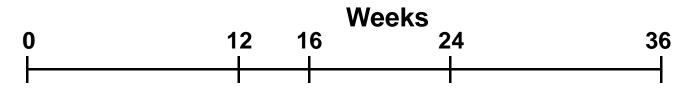



N=Number of subjects; SOC=Standard of care; PBO=Placebo; *N represents GT2 subjects only




VALENCE: GT 2/3 SVR12 and Relapse Rates

	GT 2 SOF+RBV 12 Weeks N=73	GT 3 SOF+RBV 24 Weeks N=250
Overall SVR12	93%	84%
Treatment-Naïve	97% (31/32)	93% (98/105)
Treatment-Experienced	90% (37/41)	77% (112/145)
Overall Relapse Rate	7% (5/73)	14% (34/249)
Treatment-Naïve	3% (1/32)	5% (5/105)
Treatment-Experienced	10% (4/41)	20% (29/144)



Genotypes 1, 4, 5 and 6

Phase 3 Trial Design: GT 1, 4, 5, 6

Trial Name	Population	Regimen* and Duration
GS-US-334-0110 (NEUTRINO)	Treatment-Naïve	SOF+PEG/RBV 12 Weeks

◆SVR12

GS-US-334-0110 NEUTRINO

GT1/4/5/6 Naïve SOF + PEG/RBV N=327

N=Number of subjects; PEG=Pegylated Interferon

*SOF (400 mg/day) + PEG (180 µg/week) + RBV (1000 or 1200 mg/day)

NEUTRINO: GT 1, 4, 5, 6 Treatment-Naive SVR12

	SOF+PEG/RBV 12 wk N=327
Overall SVR12	90% (295/327)
GT 1	89% (261/292)
GT 1a	92% (206/225)
GT 1b	82% (54/66)
GT 4	96% (27/28)
GT 5*	100% (1/1)
GT 6*	100% (6/6)

^{*}Available data on subjects with genotype 5 or 6 HCV infection is limited

Efficacy Summary: Phase 3 Trials

- Genotype 2: SOF+RBV 12 week duration
 - Treatment-naïve: 93-97%
 - Treatment-experienced: 82-90%
- Genotype 3: SOF+RBV 24 week duration
 - Treatment-naïve: 93%
 - Treatment-experienced: 77%
- Genotypes 1 and 4: SOF+PEG/RBV 12 week duration
 - GT 1 treatment-naïve: 89%
 - GT 4 treatment-naïve: 96%

Pre-Transplant Population

Pre-Transplant Population

- Recurrence of HCV infection after liver transplantation is almost universal
- Rate of fibrosis progression is accelerated compared to non-transplant HCV patients with approximately 10-25% developing cirrhosis within 5-10 years of transplantation¹
- No approved therapies to prevent recurrence of HCV infection post-liver transplant
- Represents an area of unmet medical need

¹ Burra P. Seminars in Liver Disease 2009

P7977-2025: Pre-Transplant Trial

- Ongoing Phase 2 trial of SOF+RBV in HCV subjects (GT1-6) with hepatocellular carcinoma (HCC)
 - meeting the Milan criteria¹ prior to undergoing liver transplantation (with anticipated time to transplant within one year)
- Listed for liver transplant
 - MELD score of < 22 (HCC-weighted MELD score of ≥ 22)
 - Child-Pugh Turcotte (CPT) score ≤ 7
- Treatment duration was for a maximum of 24 weeks (later extended to 48 weeks), or until transplant, whichever comes first

¹ Milan criteria were defined as the presence of a tumor 5 cm or less in diameter in subjects with single hepatocellular carcinoma and no more than three tumor nodules, each 3 cm or less in diameter, in subjects with multiple tumors. There should be no extrahepatic manifestations of the cancer and no evidence of vascular invasion of the tumor.

www.fda.gov

P7977-2025: Pre-Transplant Trial Interim Efficacy Results

 Prevention of HCV recurrence post-transplant determined by a sustained post-transplant virological response (HCV RNA < LLOQ) at 12 weeks post-transplant (pTVR12).

Post-Transplant Virologic Response at Week 12

HCV Genotype	SOF+RBV
Overall pTVR12, % (n/N)	64% (23/36)
GT 1a	62% (8/13)
GT 1b	46% (6/13)
GT 2	100% (5/5)
GT 3	75% (3/4)
GT 4	100% (1/1)

Median time to transplant was 21 weeks (range: 2-42 weeks)

Summary of Pre-Transplant Data

- Subpopulation of pre-transplant patients eligible for a transplant due to upgrade in MELD scores due to HCC
- Demonstrated efficacy in a limited number of subjects (pTVR12 of 64%, 23/36)
- Optimal duration of treatment has not been determined
- Higher rates of SAEs, Grade 3 or 4 AEs, and deaths were reported in this pre-transplant population compared to the Phase 3 trials
- Addresses an unmet medical need

www.fda.gov

Safety Profile

Overall Summary of Adverse Events (Integrated Data)

	Placebo 12 Weeks	SOF+RBV 12 Weeks	SOF+RBV 24 Weeks	SOF+PEG/RBV 12 Weeks
	POSITRON	FISSION, POSITRON, FUSION	VALENCE	NEUTRINO
	N=71 n (%)	N=566 n (%)	N=250 n (%)	N=327 n (%)
Any Adverse Event (AE)	55 (78)	496 (88)	228 (91)	310 (95)
Serious AE	2 (2.8)	22 (3.9)	10 (4.0)	4 (1.2)
Grade 3 or 4 AE	1 (1.4)	41 (7.2)	17 (6.8)	48 (14.7)
AE Leading to Permanent Discontinuation from Any of the Study Drugs	3 (4.2)	9 (1.6)	1 (0.4)	8 (2.4)

Serious Adverse Events in Phase 3 Trials

- Incidence of SAEs was comparable between the SOF+RBV 12 Week group (3.9%) and SOF+RBV 24 Week group (4%)
- Incidence of SAEs that were considered related to the study drug by the investigators was very low (<1%)
 - The investigator's causality assessment for relatedness seems reasonable for the observed SAEs.
- There was no apparent clustering of SAEs observed within system organ classes (SOCs)
- The only SAE seen in ≥ 3 subjects in SOF+RBV group was: Malignant hepatic neoplasm

Evaluation of Cardiac Disorders Sofosbuvir-Treated Subjects

- No cases of cardiomyopathy reported
- No serious or severe cardiac AEs reported
- No treatment discontinuations due to cardiac AEs
- No clustering of cardiac-related AEs
- Based on the review of the submitted data, no obvious safety issue related to cardiac toxicity has been identified to date.

Safety Summary

- Sofosbuvir regimens (in combination with RBV or in combination with PEG/RBV) were well tolerated in all patient populations studied
- No clustering or trends of any specific adverse events were noted
- At this time no safety concerns specific to cardiac toxicity associated with sofosbuvir use have been identified

Clinical Virology

Next Generation Sequencing Data

Of 982 subjects in the SOF+RBV or SOF+PEG+RBV groups of Phase 3 Trials:

Clinical Trial	Subjects with NGS Data	NGS Raw Data Files	
P7977-1231 (FISSION)	78	308	
GS-US-334-0107 (POSITRON)	41	115	
GS-US-334-0108 (FUSION)	76	189	
GS-US-334-0110 (NEUTRINO)	29	64	
Totals	224	676	

Treatment-Emergent NS5B Substitutions: Treatment Failures

S282T

– GT2b relapser (12 week SOF monotherapy)

L159F

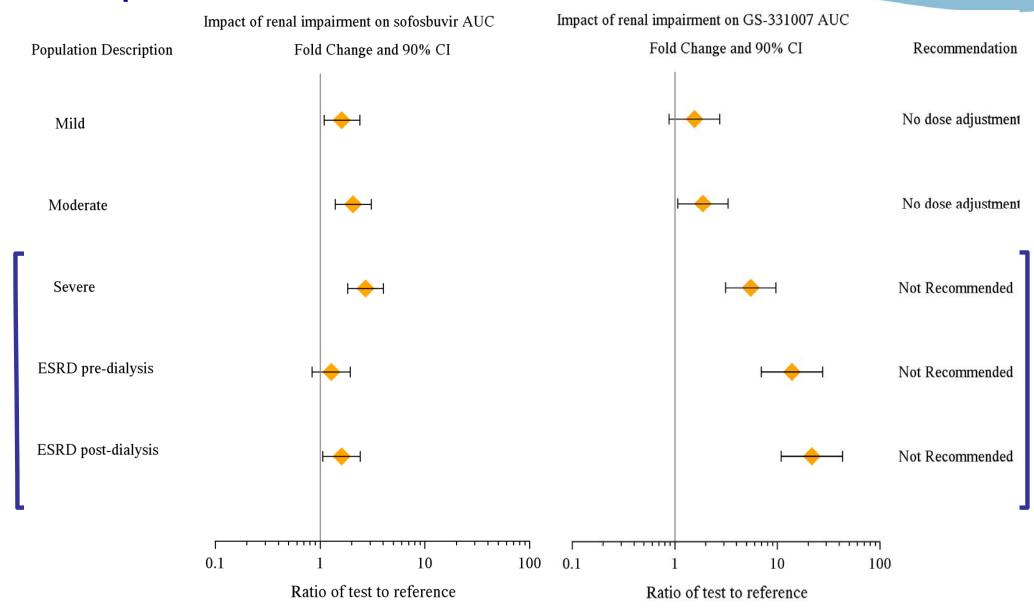
- Previously identified HCV NS5B nucleotide inhibitor resistance-associated substitution¹
- 6 GT3a relapsers

V321A

5 GT3a relapsers

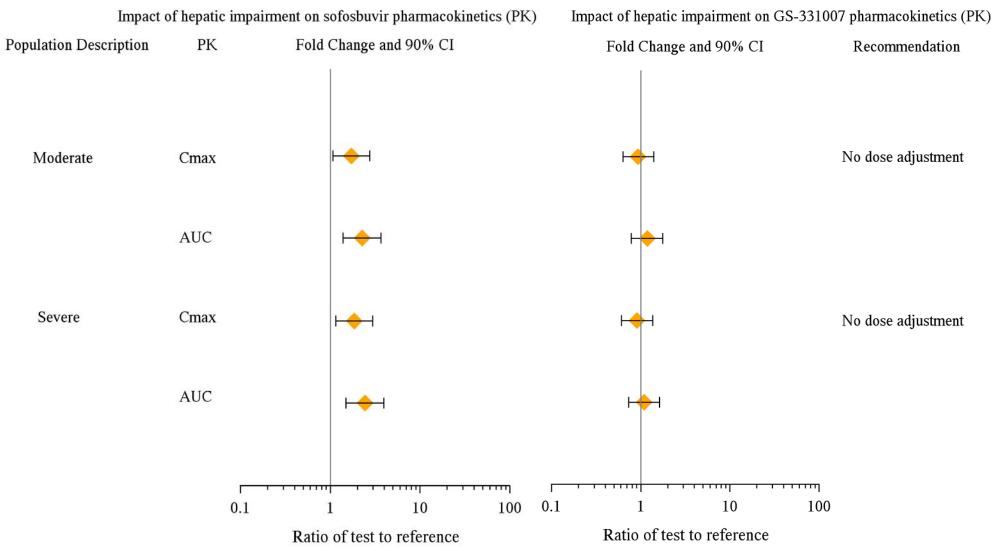
+ Pre-Transplant Trial P7977-2025 (SOF+RBV)

- S282T or R
- GT 2b relapser (12 week SOF monotherapy)
- S282R+L320F¹: GT 1a non-responder
- L159F
- 6 GT 3a relapsers
- 2 GT 1a subjects (one breakthrough and one relapser)
- 1 GT 2b subject (breakthrough)
- Present at baseline in 4 GT 1b subjects who had breakthrough or relapsed post-transplant


¹Tong et al., 63rd AASLD, Nov 9-13, 2012

Resistance Summary

- Overall, these results indicate that when sofosbuvir is not used as part of an optimal regimen or duration, resistance may emerge.
- Evidence of genotypic resistance in breakthroughs and relapses
 - SOF Monotherapy Relapse: S282T with mean 13.5fold reduced susceptibility to SOF
 - SOF+RBV GT1a nonresponder: S282R+L320F
 - Breakthroughs/Relapses in multiple studies and genotypes: L159F and V321A (no detectable shift in phenotypic susceptibility to sofosbuvir)


Clinical Pharmacology

Recommended for Mild and Moderate Renal Impairment

Drug Interactions: Potential Effect of Other Drugs on Sofosbuvir

Drug	Effect on Sofosbuvir	Recommendation
P-gp or BCRP Inducers		
Rifampin St. John's wort Tipranavir Rifabutin Rifapentine Anticonvulsants	↓ Sofosbuvir	Should not be coadministered

Drug Interactions: No Clinically Significant Effect

	Effect on Sofosbuvir,
	Metabolite, or
Drug	Interacting Drug

Recommendation

Darunavir/ritonavir

Emtricitabine

Ffavirenz

Raltegravir

Rilpivirine

Tenofovir DF

Methadone

Tacrolimus

Cyclosporine*

→ Sofosbuvir

← Interacting drug

Can coadminister with no dose adjustment of either drug

^{*}Cyclosporine increased the concentrations of sofosbuvir and GS-331007; however, the increase was not considered clinically significant.

Clinical Pharmacology Summary

- No dose adjustment needed for sofosbuvir in patients with mild or moderate renal impairment.
- Sofosbuvir can be used in patients with hepatic impairment (any degree) with no dose adjustment.
- There is the potential for a reduction in the efficacy of sofosbuvir when it is coadministered with P-gp or BCRP inducers.
- Drug interaction studies conducted to date have demonstrated no clinically significant changes for either sofosbuvir or the interacting drug.

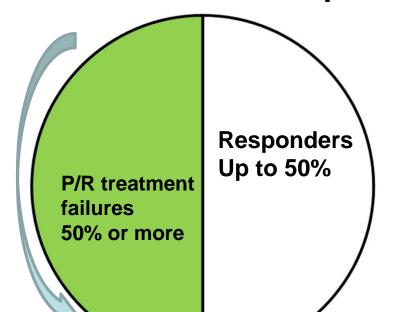
Conclusions

- Sofosbuvir in combination with ribavirin provides the first, all-oral interferon-free regimen for CHC patients with genotype 2 or 3 HCV infection
- Sofosbuvir in combination with pegylated interferon and ribavirin provides improved efficacy, and shorter treatment duration for CHC patients with genotype 1 or 4 HCV infection
- Sofosbuvir and ribavirin regimen provides a therapeutic option for CHC patients with HCC awaiting liver transplantation thus addressing an unmet need
- No major safety issues associated with sofosbuvir use have been identified to date

Use of Sofosbuvir in Genotype 1 PEG/RBV Treatment-Experienced Population

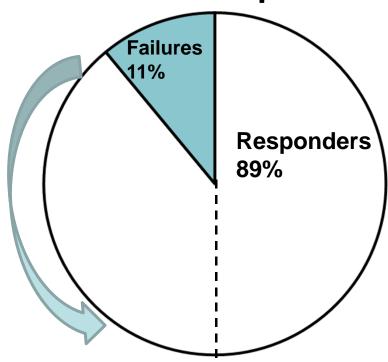
Jeffry Florian PhD and Karen Qi PhD on behalf of the Sofosbuvir Review Team

Antiviral Drugs Advisory Committee Meeting October 25, 2013


Genotype 1 PEG/RBV Treatment-Experienced Population

Does the high SVR rate in the treatment-naïve (TN) population provide evidence to support use of sofosbuvir in combination with PEG/RBV for treatment of CHC in patients with GT 1 infection who are nonresponders to a prior course of PEG/RBV?

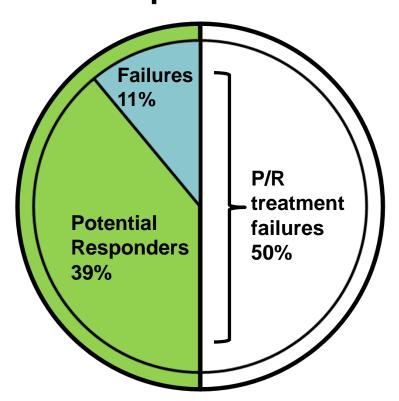
- SVR12 rate of 89% was demonstrated with a 12-week SOF+PEG/RBV regimen in HCV GT 1 TN subjects (NEUTRINO)
- 12-week SOF+PEG/RBV regimen was not specifically evaluated in HCV GT 1 treatment-experienced (TE) subjects in the sofosbuvir development program


Predicted SVR in GT 1 PEG/RBV TE Population

Historical PEG/RBV Response

Subjects classified as PEG/RBV treatment failures*

NEUTRINO Response Rates



Response rates in these subjects most likely contributed to overall increase in SVR

^{*} Includes relapsers, partial responders, null responders, and discontinuations

Historical PEG/RBV Response NEUTRINO Response Rates

Predicted SVR in GT 1 P/R TE Population = 78% (39/50)

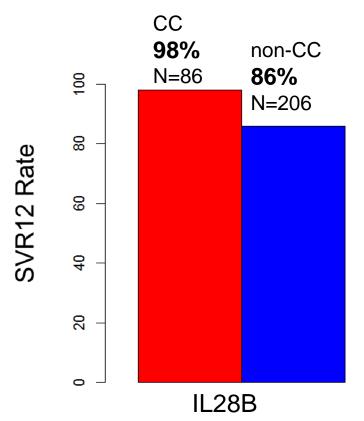
www.fda.gov

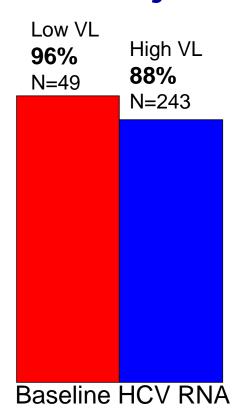
Baseline Factors Predictive of Lower PEG/RBV Response in GT 1

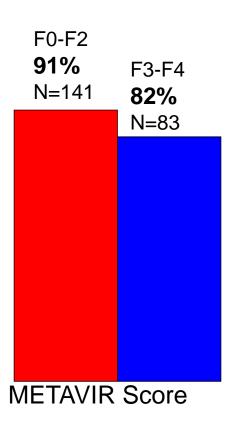
- High baseline HCV RNA
- Fibrosis score F3 or F4
- Steatosis
- Pretreatment fasting glucose ≥ 5.6 mmol/L
- Pretreatment ALT level >upper limit of normal
- Race
 - African Americans

IL28B

Subsequent GWAS identified a host polymorphism associated with response to treatment: IL28B (linked with race)²


Selected Baseline Predictive Factors: FDA Analyses


- These factors were previously identified to predict response rates in harder-to-treat GT 1 TN subjects^{1, 2, 3, 4, 5}
 - IL28B non-CC
 - High baseline HCV RNA Viral Load
 - METAVIR F3-F4
- Based on these baseline predictors, accrued knowledge has shown overlapping SVR rates between the harder-totreat treatment-naïve population and documented partial/null responders.


Harder-to-Treat Treatment-Naïve: 43-51%

Partial and Null Responders: 44-59%

Non-CC/High baseline HCV viral load/F3-F4

71% (37/52)

95% CI: (57%, 83%)

Considerations and Limitations

	Considerations		Limitations
•	High response rate observed in GT 1 TN subjects	•	No available data in GT 1 PEG/RBV TE subjects
•	FDA analyses predict high SVR rates in GT 1 PEG/RBV TE population	•	Analyses based on assumptions

- May provide therapeutic option for GT 1 PEG/RBV TE population
- Shorter treatment duration may provide an improved safety profile

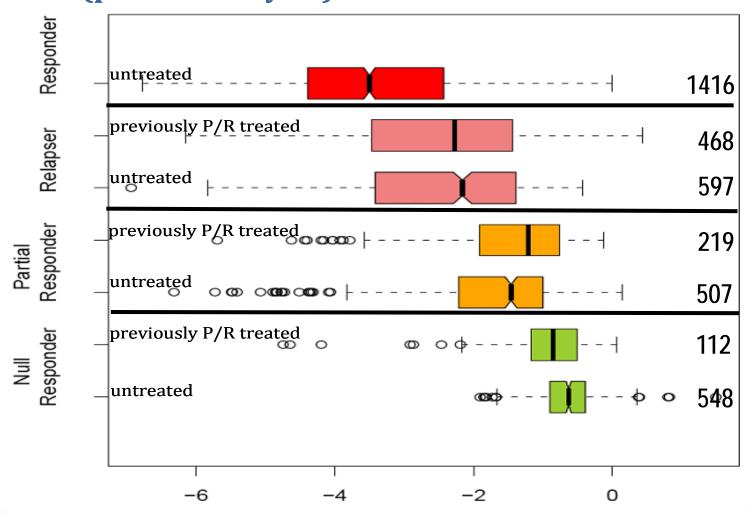
References

- 1. IDEAL Study Team, Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N Engl J Med 361(6):580-93 (2009).
- 2. Ge, D., Fellay J., Thompson A.J., Simon J.S. et al, Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262):399-401 (2009).
- 3. Ghany, M. G., Strader, D. B., Thomas, D. L., Seeff, L. B. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49, 1335–1374 (2009).
- 4. Ghany M.G., Nelson D.R., Strader D.B., Thomas D.L., Seeff, L.B. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases; American Association for Study of Liver Diseases Hepatology 54(4), 1433-44 (2011).
- 5. HALT-C Trial Group, Peginterferon alfa-2a and ribavirin in patients with chronic hepatitis C who have failed prior treatment. Gastroenterology 126, 1015–1023 (2004).

Acknowledgements

- Edward Cox, M.D., M.P.H.
- Debra Birnkrant, M.D.
- Jeffrey Murray, M.D., M.P.H.
- Sarah Connelly, M.D.
- Kimberly Struble, Pharm.D.
- Kendall Marcus, M.D.
- Dionne Price, Ph.D.
- Guoxing Soon, Ph.D.
- Wen Zeng, Ph.D.
- Karen Qi, Ph.D.
- Julian O'Rear, Ph.D.
- Lisa Naeger, Ph.D.
- Eric Donaldson, Ph.D.
- John Lazor, Pharm.D.
- Michael Pacanowski, Pharm.D., M.P.H.
- Shirley Seo, Ph.D.
- Jenny Zheng, Ph.D.
- Yaning Wang, Ph.D.
- Jeffry Florian, Ph.D.
- Sarah Dorff, Ph.D.
- Hanan Ghantous, Ph.D., DABT
- Christopher Ellis, Ph.D.

- Rapti Madurawe, Ph.D.
- Stephen Miller, Ph.D.
- George Lunn, Ph.D.
- Fuqiang Liu, Ph.D.
- Minerva Hughes, Ph.D.
- Steven Donaldson, Ph.D.
- Antonie El Hage, Ph.D.
- Mahesh Ramanadham, Pharm.D.
- Krishna Gosh, Ph.D.
- David Roeder, M.S.
- Karen Winestock
- Linda Onaga, M.P.H.
- Sohail Mosaddegh, Pharm.D.
- Office of Compliance
- Office of Regulatory Affairs
- Office of Surveillance and Epidemiology
- Division of Drug Medication Error and Analysis
- Office of Prescription Drug Promotion
- Computational Science Center
- Timothy J. Kropp, Ph.D.


Back-Up Slides Shown

"Reversion" of NS5B Substitutions

- S282T (GT2b SOF monotherapy subject) emerged at Week 4 post-treatment and was no longer detected at Week 12 post-treatment.
- In one breakthrough subject, L159F was present at a frequency of 9.5% at Post-Transplant Week 1 and this dropped to 1.2% by Post-Transplant Week 2
- Many of the GT3a relapser samples were collected weeks after termination of treatment
 - Possible that F159 was present in the relapse samples while on-treatment, but rapid displacement would result in no detectable F159 in samples that were taken too long after relapse (>2 weeks).

Similar Virologic Response at Week 4 with First or Second PR treatment (pooled analysis)

